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LETTER TO THE EDITOR 

’Ikaining of optimal cluster separation networks 

A Wendemuth 
Department of Physics, Th&rerical Physics, Oxford UI!ivenity. 1 Keble Road, Oxford 

, OX1 3NP. UK 

Received 3 February 1994 

Abstract. Finding the optimal separation of two clusters of normalized vectors corresponds to 
Wining Ulresholds and weights in a neural network of maximum stability. In order to achieve 
this, two I d  iterative alpriihms are presented which Weat threshold and weights all in one, 
avoiding the need to calculate any intermediate ‘test’ quantities. Convergence is proved. and 
the separationlstability obtained is shown to match theoretical predictions and to be superior to 
existing algorithms. 

Linear separation of two clusters of vectors has been studied intensively. In particular, in the 
context of neural networks, supervised learning algorithms have been presented which aim 
to produce a positive gap size or stability between the two clusters of output. Initially, the 
Hebb rule leads to the well understood Hopfield model. This model has been shown to yield 
low or even negative stability of the embedding of patterns (Hertz et ul 1991). Therefore, 
algorithms have been proposed which overcome this drawback. The Adaline algorithm will 
always yield positive stability for loading capacities U less than one (Diedeich and Opper 
1987, Widrow and Hoff 1960). The minover (Krauth and Mezard 1987) and AdaTmn 
(Anlauf and Biebl 1989) algorithms give the optimal (i.e. best obtainable) stability for 
networks without thresholds. 

However, these algorithms do not achieve maximum gap sidstability since they either 
fail to treat the threshold at all or just treat the ‘threshold dimension’ as an augmented one. 
The tbreshold can be trwted correctly by optimization-theory methods (Fletcher 1987). 
However, these require inspection of a limited number of ‘test solutions’ which have to be 
computed by lengthy matrix inversions. Algorithms have been proposed which do this very 
economically (Rujan 1993) but which remain algebraically complex non-local procedures. 
The ‘test solutions’ for biased pattems may as well be computed by fast iterative schemes 
(Wendemuth and Sherrington 1993). It is desirable from a computational point of view, as 
well as from the biological concept of neural networks, not to inspect test solutions at all 
but to have simple and local iterative algorithms of the kind proposed here. Furthermore, 
it was shown that optimal stability in networks with adjustable threshold leads to greatly 
improved generalization ability (Wendemuth 1994b). 

The optimal-stability problem can be stated in neural networks and in cluster separation. 
In neural-network terms, the given problem is to find an N-dimensional perceptron vector 
J and a threshold T such that for a given set of N-dimensional patterns (6, . . . , &,} and 
corresponding outputs (‘targets’) Is,, , . , T ~ ]  (E, E RN; &I2 = N Vp; z, E (fl]), the 
equations 

(1) 
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r, = sign(.7 . E,, - T) p = 1 . . . p 
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are satisfied with maximum stability A = Am, i.e. 

In geometric terms, the two sets of examples belonging to the two classes of output 
form two clusters. The task then is to separate these clusters such that the gap between 
their convex hulls becomes maximal. The gap size is exactly 2AOpt, the normal d w t i o n  
from one convex hull to the other is 3 and the. centre of the gap is at distance T from the 
origin. The hyperplane which is the centre of the gap is then given by all points E satisfying 

The main concept of the following hyo algorithms is to completely eliminate the 
thresholdfrom the iteration. The minimal-overlap algorithm, generalizing the idea of the 
minover algorithm by Kmuth and Mezard (1987), proceeds as follows. 

The minimdowerhp algorithm. Define U, := q&. Stan with J ( O )  = 0 and at any 
iteration step t find two quantities U!), c!) given by J(') .u!f = minP{J(')-u,lt, =&I]. 

J . E  - T = 0. 

~f P . L(u(') z +  +U!') 6 c (c = some fixed positive n u m b )  then 

J(f+') = J ( f )  + --(u(~) 1 1  +U!)) N 2  + 

else 

1 
2 

stop (after z = M steps) and set T = J(M) . -(uiM' -U:"). 

The possibility of eliminating the threshold can be understood as follows. Consider J(f) 
at iteration step t and let the threshold be a free parameter. One would like to use T to find 
the best possible stability at given (fixed) Jv) .  After equation (2). one has to find 

f$ =: maxmin ~Z)(T) =: maxmin(J(')o, - TZ,) (p = 1.. . p ) .  (3) 

Keeping the patterns with different outputs separate, one obtains for patterns with z, = 

T l d  T P  

(+/-)I 

$')(T) > &(T) =: J( ' ) .  U!$ - (+/-)T (for any T) (4) 

and f.$(T) is.decreasing/increasing with T. Therefore, f$ is given by f"' opt - - f- (') (T) = 
j$)(T) which yields 

(5) (f) - J(f) . i(U(') - U!)) 
Top1 - 2 +  

m d  

fc f )  opt- - J(f) .U@) * 7 Top1 (I) - - y 'J(') . (U!) + = A(t)lJ(f)I. (6) 

Equation (5) is used to set the threshold to its optimal value. In equation (6), the optimally 
set threshold is used and therefore eliminated. Also, from equation (6), the stop condition 
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of the algorithm is derived. The update turns J into the direction given by equation (6) in 
the same spirit as in the minover algorithm. 

The algorithm is not going to be ‘trapped’ into a halt at any step, since ut) +U!!’ = 0 
will never be obtained. If it were, one would have had = &’. This would mean that 
the same pattern would be mapped to +I and to -1 simultaneously, which by feasibility 
of the solution cannot occur. 

The proof of this algorithm is achieved by mapping it onto the proof of the minover 
algorithm. The first alteration is that updates are in the space of ‘difference patterns’ v,,, 
defined by vi = OS[u; + U;]. Note that if there are (kp) patterns with positive output, 
the total number of difference patterns is D = p2k(l - k ) .  However, this does not cause 
an increase in convergence time: if one compares the standard minover algorithm without 
threshold to the minimal-overlap algorithm, the latter detects, at every sweep t, the quantities 
ut) and U!!’ simultaneously by inspecting the p patterns. The number of update sweeps in 
order to achieve a given fraction F of the optimal stability remains proportional to 1/( 1 - F) 
as known from Wendemuth et a1 (1993). 

The second alteration is the treatment of the threshold as a dependent variable. With 
T optimally set at any iteration step, the least stable patterns are U!) and U!!’. Adding 
the positive and negative terms in equations 4) and using equation (3), one eliminates the 
threshold and obtains J @ )  . v,, > 0.5J“) . (4) + U?) (p  = 1 . . . D).  Therefore, one may 
regard patterns in difference spaces throughout. In particular, J ’ q ,  > J*.OS(u;+ur) > 
c = A o P l ~ J * ~  (p  = 1 . . . D).  J’ is the weight vector of the optimally-stable network. It is 
assumed that such a network exists with Aql > 0. 

If one uses the proof from Krauth and Mezard (1987), replacing their U@ by v,,, 
convergence follows on noting that v% 2 Iv,,l > 0 (p  = 1 . .  . D ) .  For c --f 03, the 
algorithm will converge to optimal stability. Clearly, this algorithm works whatever the 
correlation between the patterns is. 

In the restricted gradient-descent algorithm, updates are again performed with all 
difference patterns v,,. The percepeon vector can be written in terms of the embedding 
strengths x z  and x; as J = E:!, x z u z  + x;u;. One then proceeds as follows. 

The restricted gradient-descent algorithm. Start with J(0) = 0 and update J sequentially 
with all difference patterns according to 

Sx; = Sx; = max { [L(l- N J ( t ) .  v,,)] , -x;, - x i }  (7) 

where 0 < y < 1. Stop if for the last set (p  = 1.. . D )  of updates 

and set T as in equation (5). 

The stop condition will be met after a finite number of updates for any E and, for E -+ 0, 
optimal stability is reached. 

Since gradient-descent steps are performed, the difference between the obtained stability 
and the optimal one will decay exponentially. Decay times can be computed as in 
Wendemnth et a1 (1993). showing that the number of learning sweeps required for random 
input patterns is a In(l/(l - F ) )  which is much smaller than in the minimal-overlap 
algorithm. However, one has to consider that one learning sweep contains D (x pz update 
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steps whereas in the minimal-overlap algorithm, the two quantities ut) and a!!’ i n  any 
sweep are found by stepping through the p pattems once. The resbkted gradient-descent 
algorithm will therefore be faster than the minimal-overlap algorithm only for small p and 
if high accuracies F are desired. Note that this difference in sweep sizes did not occur in 
the respective algorithms without thresholds since, then, every sweep contained p steps. 

The proof of the algorithm can again be mapped to the AdaTron proof (Anlauf and Biehl 
1989) applied to the space of difference patterns. Since by construction S x i  = &x;. it is 
ensured that updates are indeed performed with difference patterns only. The algorithm then 
performs gradient-descent steps in the space of difference patterns, approaching a solution 
J = E;=, A,v, = E:=, x z u z  + EEZf)’x;ui with Jv, 1 (p = 1.. . D )  where 
the restriction to positive embedding strengths ensures that A, p 0. In analogy with the 
AdaTron proof, A, p 0 guarantees optimality of the selected subset of pattems which form 
the perceptron vector. The threshold is restored as in the minover case and is therefore 
optimal, which completes the proof. The performances of the two algorithms as well as a 
full proof are given in Wendemuth (1994a) and will be published elsewhere. 

It is a pleasure to thank D Shemngton for inspiring discussions. Also, I would like 
to acknowledge support by the Science and Engineering Research Council of Great 
Britain, the Friedrich-NaumannStiftung and the European Community under contract no 
ERB4001GT922302. 
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